Fairhurst, M. T., Tajadura-Jiménez, A.
, Keller, P. E. & Deroy, O. (2023).
You, me, and us: Maintaining self-other distinction enhances coordination, agency, and affect.
iScience,
26(12), Article 108253.
https://doi.org/10.1016/j.isci.2023.108253
Møller, C., Højlund, A., Bærentsen, K. B., Hansen, N. C., Skewes, J. & Vuust, P. (2019).
You get what you need: individual differences in visually-induced amplification of the auditory mismatch negativity. Poster session presented at Neuroscience Day 2019, Aarhus, Denmark.
Klarlund, M., Brattico, E., Pearce, M., Wu, Y.
, Vuust, P., Overgaard, M. & Du, Y. (2023).
Worlds apart? Testing the cultural distance hypothesis in music perception of Chinese and Western listeners.
Cognition,
235, Article 105405.
https://doi.org/10.1016/j.cognition.2023.105405
Bonetti, L., Haumann, N. T., Brattico, E., Kliuchko, M., Vuust, P. & Näätänen, R. (2017).
Working memory regulates frontal Mismatch Negativity to sound intensity and slide deviants. Abstract from Neuroscience Day - Let's rethink memory 2017, Aarhus, Denmark.
Bonetti, L., Haumann, N. T., Brattico, E., Kliuchko, M., Vuust, P. & Näätänen, R. (2017).
Working memory performance predicts the neural discrimination of sound deviants as indexed by frontal mismatch negativity: an MEG study. In
Working memory performance predicts the neural discrimination of sound deviants as indexed by frontal mismatch negativity: an MEG study
Deco, G., Cruzat, J.
, Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N. K.
& Kringelbach, M. L. (2018).
Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD.
Current Biology,
28(19), 3065-+.
https://doi.org/10.1016/j.cub.2018.07.083
Mindlin, I., Herzog, R., Belloli, L., Manasova, D., Monge-Asensio, M., Vohryzek, J., Escrichs, A., Alnagger, N., Núñez, P., Gosseries, O.
, Kringelbach, M. L., Deco, G., Tagliazucchi, E., Naccache, L., Rohaut, B., Sitt, J. D. & Sanz Perl, Y. (2024).
Whole brain modelling for simulating pharmacological interventions on patients with disorders of consciousness.
Communications Biology,
7(1), Article 1176.
https://doi.org/10.1038/s42003-024-06852-9
Patow, G., Martin, I., Sanz Perl, Y.
, Kringelbach, M. L. & Deco, G. (2024).
Whole-brain modelling: an essential tool for understanding brain dynamics.
Nature Reviews Methods Primers,
4, Article 53.
https://doi.org/10.1038/s43586-024-00336-0
Uribe, C., Escrichs, A., de Filippi, E., Sanz-Perl, Y., Junque, C., Gomez-Gil, E.
, Kringelbach, M. L., Guillamon, A. & Deco, G. (2022).
Whole-brain dynamics differentiate among cisgender and transgender individuals.
Human Brain Mapping,
43(13), 4103-4115.
https://doi.org/10.1002/hbm.25905
Bonetti, L., Carlomagno, F., Kliuchko, M., Gold, B. P., Palva, S.
, Trusbak Haumann, N., Tervaniemi, M., Huotilainen, M.
, Vuust, P. & Brattico, E. (2022).
Whole-brain computation of cognitive versus acoustic errors in music: A mismatch negativity study.
NeuroImage: Reports,
2(4), Article 100145.
https://doi.org/10.1016/j.ynirp.2022.100145
Soler-Toscano, F., Galadí, J. A., Escrichs, A., Perl, Y. S., López-González, A., Sitt, J. D., Annen, J., Gosseries, O., Thibaut, A., Panda, R., Esteban, F. J., Laureys, S.
, Kringelbach, M. L., Langa, J. A. & Deco, G. (2022).
What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics.
PLOS Computational Biology,
18(9), Article e1010412.
https://doi.org/10.1371/journal.pcbi.1010412
Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M. & Vuust, P. (2019).
Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity. 1597-1609. Poster session presented at Organization for Human Brain Mapping (OHBM) Annual Meeting 2019, Rome, Italy.
Lumaca, M., Haumann, N. T., Brattico, E., Grube, M. & Vuust, P. (2019).
Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity.
European Journal of Neuroscience,
49(12), 1597-1609.
https://doi.org/10.1111/ejn.14329
Kleber, B., Veit, R., Moll, C. V., Gaser, C., Birbaumer, N. & Lotze, M. (2016).
Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.
NeuroImage,
133, 477-83.
https://doi.org/10.1016/j.neuroimage.2016.03.045
Goncharova, M., Jadoul, Y., Reichmuth, C., Fitch, W. T.
& Ravignani, A. (2024).
Vocal tract dynamics shape the formant structure of conditioned vocalizations in a harbor seal.
Annals of the New York Academy of Sciences,
1538(1), 107-116.
https://doi.org/10.1111/nyas.15189
De Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-Garcia, A., Salazar-Casals, A.
& Ravignani, A. (2022).
Vocal tract allometry in a mammalian vocal learner.
Journal of Experimental Biology,
225(8), Article jeb243766.
https://doi.org/10.1242/jeb.243766
Møller, C., Højlund, A., Bærentsen, K. B., Hansen, N. C., Skewes, J. C. & Vuust, P. (2018).
Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.
Attention, Perception & Psychophysics,
80(4), 999-1010.
https://doi.org/10.3758/s13414-017-1481-8
Fink, L. K., Warrenburg, L. A., Howlin, C., Randall, W. M.
, Hansen, N. C. & Wald-Fuhrmann, M. (2021).
Viral tunes: changes in musical behaviours and interest in coronamusic predict socio-emotional coping during COVID-19 lockdown.
Humanities and social sciences communications,
8, Article 180.
https://doi.org/10.1057/s41599-021-00858-y
Fjaeldstad, A. W., Stiller-Stut, F.
, Gleesborg, C., Kringelbach, M. L., Hummel, T.
& Fernandes, H. M. (2021).
Validation of Olfactory Network Based on Brain Structural Connectivity and Its Association With Olfactory Test Scores.
Frontiers in Systems Neuroscience,
15, Article 638053.
https://doi.org/10.3389/fnsys.2021.638053
Kaasgaard, M., Rasmussen, D. B., Hjerrild Andreasson, K., Hilberg, O., Løkke, A.
, Vuust, P. & Bodtger, U. (2022).
Use of Singing for Lung Health as an alternative training modality within pulmonary rehabilitation for COPD: a randomised controlled trial.
European Respiratory Journal,
59(5), Article 2101142.
https://doi.org/10.1183/13993003.01142-2021,
https://doi.org/10.1183/13993003.01142-2021
Escrichs, A., Perl, Y. S., Uribe, C., Camara, E., Türker, B., Pyatigorskaya, N., López-González, A., Pallavicini, C., Panda, R., Annen, J., Gosseries, O., Laureys, S., Naccache, L., Sitt, J. D., Laufs, H., Tagliazucchi, E.
, Kringelbach, M. L. & Deco, G. (2022).
Unifying turbulent dynamics framework distinguishes different brain states.
Communications Biology,
5(1), Article 638.
https://doi.org/10.1038/s42003-022-03576-6
Parsons, C., Stark, E. A., Young, K. S., Stein, A.
& Kringelbach, M. L. (2013).
Understanding the human parental brain. A critical role of the orbitofrontal cortex.
Social Neuroscience,
8(6), 525-43.
https://doi.org/10.1080/17470919.2013.842610
Heng, J. G., Zhang, J.
, Bonetti, L., Lim, W. P. H.
, Vuust, P., Agres, K. & Chen, S. H. A. (2024).
Understanding music and aging through the lens of Bayesian inference.
Neuroscience and Biobehavioral Reviews,
163, Article 105768.
https://doi.org/10.1016/j.neubiorev.2024.105768
Vohryzek, J.
, Cabral, J., Vuust, P., Deco, G.
& Kringelbach, M. L. (2022).
Understanding brain states across spacetime informed by whole-brain modelling.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
380(2227), Article 20210247.
https://doi.org/10.1098/rsta.2021.0247
Saenger, V. M., Kahan, J., Foltynie, T., Friston, K., Aziz, T. Z., Green, A. L.
, van Hartevelt, T. J., Cabral, J., Stevner, A. B. A., Fernandes, H. M., Mancini, L., Thornton, J., Yousry, T., Limousin, P., Zrinzo, L., Hariz, M., Marques, P., Sousa, N.
, Kringelbach, M. L. & Deco, G. (2017).
Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease.
Scientific Reports,
7(1), 9882. Article 9882.
https://doi.org/10.1038/s41598-017-10003-y
Vila-Vidal, M., Capouskova, K., Atasoy, S.
, Kringelbach, M. L. & Deco, G. (2020).
Uncovering the spatiotemporal scales of common neuro-mental constructs: Comment on “Is temporo-spatial dynamics the ‘common currency’ of brain and mind? In Quest of ‘Spatiotemporal Neuroscience’ ” by Georg Northoff et al. Physics of Life Reviews,
33, 64-66.
https://doi.org/10.1016/j.plrev.2019.10.004
Stark, E., Stacey, J., Mandy, W.
, Kringelbach, M. L. & Happé, F. (2021).
'Uncertainty attunement' has explanatory value in understanding autistic anxiety.
Trends in Cognitive Sciences,
25(12), 1011-1012.
https://doi.org/10.1016/j.tics.2021.09.006
Cheung, V. K. M., Harrison, P. M. C., Meyer, L.
, Pearce, M. T., Haynes, J. D. & Koelsch, S. (2019).
Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity.
Current Biology,
29(23), 4084-4092.e4.
https://doi.org/10.1016/j.cub.2019.09.067
Thaler, H., Skewes, J. C., Gebauer, L., Christensen, P., Prkachin, K. M.
& Jegindø Elmholdt, E.-M. (2017).
Typical pain experience but underestimation of others’ pain: Emotion perception in self and others in autism spectrum disorder.
Autism,
22(6), 751-762.
https://doi.org/10.1177/1362361317701269
Heggli, O. A., Konvalinka, I.
, Cabral, J., Brattico, E., Kringelbach, M. & Vuust, P. (2021).
Transient brain networks underlying interpersonal strategies during synchronized action.
Social Cognitive and Affective Neuroscience,
16(1-2), 19-30.
https://doi.org/10.1093/scan/nsaa056