Lumaca, M., Haumann, N. T., Brattico, E., Grube, M. & Vuust, P. (2019).
Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity.
European Journal of Neuroscience,
49(12), 1597-1609.
https://doi.org/10.1111/ejn.14329
Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M. & Vuust, P. (2019).
Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity. Poster session presented at Organization for Human Brain Mapping (OHBM) Annual Meeting 2019, Rome, Italy.
Møller, C., Højlund, A., Bærentsen, K. B., Hansen, N. C., Skewes, J. & Vuust, P. (2019).
You get what you need: individual differences in visually-induced amplification of the auditory mismatch negativity. Poster session presented at Neuroscience Day 2019, Aarhus, Denmark.
Clemente, A., Vila-Vidal, M.
, Pearce, M. T., Aguiló, G., Corradi, G. & Nadal, M. (2020).
A Set of 200 Musical Stimuli Varying in Balance, Contour, Symmetry, and Complexity: Behavioral and Computational Assessments.
Behavior Research Methods,
52(4), 1491-1509.
https://doi.org/10.3758/s13428-019-01329-8
Witek, M. A. G., Liu, J., Kuubertzie, J., Yankyera, A. P., Adzei, S.
& Vuust, P. (2020).
A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff.
Music Perception,
37(4), 278-297.
https://doi.org/10.1525/MP.2020.37.4.278
Trusbak Haumann, N., Hansen, B., Huotilainen, M.
, Vuust, P. & Brattico, E. (2020).
Applying stochastic spike train theory for high-accuracy human MEG/EEG.
Journal of Neuroscience Methods,
340, [108743].
https://doi.org/10.1016/j.jneumeth.2020.108743
Zioga, I., Harrison, P. M. C.
, Pearce, M. T., Bhattacharya, J. & Luft, C. D. B. (2020).
Auditory but not audiovisual cues lead to higher neural sensitivity to the statistical regularities of an unfamiliar musical style.
Journal of Cognitive Neuroscience,
32(12), 2241-2259.
https://doi.org/10.1162/jocn_a_01614
Padilla, N., Saenger, V. M.
, van Hartevelt, T. J., Fernandes, H. M., Lennartsson, F., Andersson, J. L. R.
, Kringelbach, M., Deco, G. & Åden, U. (2020).
Breakdown of Whole-brain Dynamics in Preterm-born Children.
Cerebral Cortex,
30(3), 1159-1170.
https://doi.org/10.1093/cercor/bhz156
Perl, Y. S., Pallavicini, C., Ipiña, I. P.
, Kringelbach, M., Deco, G., Laufs, H. & Tagliazucchi, E. (2020).
Data augmentation based on dynamical systems for the classification of brain states.
Chaos, Solitons and Fractals,
139, [110069].
https://doi.org/10.1016/j.chaos.2020.110069
Quiroga Martinez, D. R., Hansen, N. C., Højlund, A., Pearce, M., Brattico, E. & Vuust, P. (2020).
Decomposing neural responses to melodic surprise in musicians and non-musicians: evidence for a hierarchy of predictions in the auditory system.
NeuroImage,
215, [116816].
https://doi.org/10.1016/j.neuroimage.2020.116816
Moorthigari, V., Carlson, E., Toiviainen, P.
, Brattico, E. & Alluri, V. (2020).
Differential Effects of Trait Empathy on Functional Network Centrality. In M. Mahmud, S. Vassanelli, M. S. Kaiser & N. Zhong (Eds.),
Brain informatics (pp. 107-117). Springer. Lecture Notes in Computer Science Vol. 12241
https://doi.org/10.1007/978-3-030-59277-6_10
Kringelbach, M. L., Cruzat, J.
, Cabral, J., Knudsen, G. M., Carhart-Harris, R., Whybrow, P. C., Logothetis, N. K. & Deco, G. (2020).
Dynamic coupling of whole-brain neuronal and neurotransmitter systems.
Proceedings of the National Academy of Sciences of the United States of America,
117(17), 9566-9576.
https://doi.org/10.1073/pnas.1921475117
Zioga, I., Harrison, P. M. C.
, Pearce, M. T., Bhattacharya, J. & Di Bernardi Luft, C. (2020).
From learning to creativity: Identifying the behavioural and neural correlates of learning to predict human judgements of musical creativity.
NeuroImage,
206, [116311].
https://doi.org/10.1016/j.neuroimage.2019.116311
Vohryzek, J., Deco, G., Cessac, B.
, Kringelbach, M. L. & Cabral, J. (2020).
Ghost Attractors in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD Phase-Locking States.
Frontiers in Systems Neuroscience,
14, [20].
https://doi.org/10.3389/fnsys.2020.00020
Kaasgaard, M., Andersen, I. C., Rasmussen, D. B.
, Hilberg, O., Løkke, A.
, Vuust, P. & Bodtger, U. (2020).
Heterogeneity in Danish lung choirs and their singing leaders: delivery, approach, and experiences: a survey-based study.
BMJ Open,
10(11), [e041700].
https://doi.org/10.1136/bmjopen-2020-041700
Hallett, M., de Haan, W., Deco, G., Dengler, R., Di Iorio, R., Gallea, C., Gerloff, C., Grefkes, C., Helmich, R. C.
, Kringelbach, M. L., Miraglia, F., Rektor, I., Strýček, O., Vecchio, F., Volz, L. J., Wu, T. & Rossini, P. M. (2020).
Human brain connectivity: Clinical applications for clinical neurophysiology.
Clinical Neurophysiology,
131(7), 1621-1651.
https://doi.org/10.1016/j.clinph.2020.03.031
Fasano, M. C., Glerean, E., Gold, B. P., Sheng, D., Sams, M.
, Vuust, P., Rauschecker, J. P.
& Brattico, E. (2020).
Inter-subject Similarity of Brain Activity in Expert Musicians After Multimodal Learning: A Behavioral and Neuroimaging Study on Learning to Play a Piano Sonata.
Neuroscience,
441, 102-116.
https://doi.org/10.1016/j.neuroscience.2020.06.015
Schiavio, A.
, Stupacher, J., Parncutt, R. & Timmers, R. (2020).
Learning Music From Each Other: Synchronization, Turn-taking, or Imitation? Music Perception,
37(5), 403-422.
https://doi.org/10.1525/mp.2020.37.5.403
Bianco, R., Harrison, P. M. C., Hu, M., Bolger, C., Picken, S.
, Pearce, M. T. & Chait, M. (2020).
Long-term implicit memory for sequential auditory patterns in humans.
eLife,
9, [e56073].
https://doi.org/10.7554/eLife.56073
Ipiña, I. P., Kehoe, P. D.
, Kringelbach, M., Laufs, H., Ibañez, A., Deco, G., Perl, Y. S. & Tagliazucchi, E. (2020).
Modeling regional changes in dynamic stability during sleep and wakefulness.
NeuroImage,
215, [116833].
https://doi.org/10.1016/j.neuroimage.2020.116833
Quiroga Martinez, D. R., Hansen, N. C., Højlund, A., Pearce, M., Brattico, E. & Vuust, P. (2020).
Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians.
European Journal of Neuroscience,
51(11), 2250-2269.
https://doi.org/10.1111/ejn.14667
Alonso Martínez, S., Marsman, J. B. C.
, Kringelbach, M. L., Deco, G. & ter Horst, G. J. (2020).
Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup.
NeuroImage: Clinical,
27, [102299].
https://doi.org/10.1016/j.nicl.2020.102299
Jespersen, K. V., Stevner, A., Fernandes, H., Sørensen, S. D., Van Someren, E.
, Kringelbach, M. L. & Vuust, P. (2020).
Reduced structural connectivity in Insomnia Disorder.
Journal of Sleep Research,
29(1), [e12901].
https://doi.org/10.1111/jsr.12901
Kaasgaard, M., Rasmussen, D. B.
, Ottesen, A. L., Vuust, P.
, Hilberg, O. & Bødtger, U. (2020).
Sing-a-Lung: Group singing as training modality in pulmonary rehabilitation for patients with Chronic Obstructive Pulmonary Disease (COPD): A multicenter, cluster-randomised, non-inferiority, controlled trial.
European Respiratory Journal,
56(Suppl 64), 4663.
https://doi.org/10.1183/13993003.congress-2020.4663
Petersen, B., Andersen, A. S., Trusbak Haumann, N., Højlund, A., Dietz, M., Michel, F., Kamaric Riis, S.
, Brattico, E. & Vuust, P. (2020).
The CI MuMuFe: A New MMN Paradigm for Measuring Music Discrimination in Electric Hearing.
Frontiers in Neuroscience,
14, [2].
https://doi.org/10.3389/fnins.2020.00002
Stark, E. A.
, Cabral, J., Riem, M. M. E., Van IJzendoorn, M. H., Stein, A.
& Kringelbach, M. L. (2020).
The Power of Smiling: The Adult Brain Networks Underlying Learned Infant Emotionality.
Cerebral cortex (New York, N.Y. : 1991),
30(4), 2019-2029.
https://doi.org/10.1093/cercor/bhz219
Toiviainen, P., Burunat, I.
, Brattico, E., Vuust, P. & Alluri, V. (2020).
The chronnectome of musical beat.
NeuroImage,
216, [116191].
https://doi.org/10.1016/j.neuroimage.2019.116191
Fasano, M. C., Cabral, J., Stevner, A., Vuust, P., Cantou, P., Brattico, E. & Kringelbach, M. L. (2020).
The early adolescent brain on music: analysis of functional dynamics reveals engagement of orbitofrontal cortex reward system. bioRxiv.
https://doi.org/10.1101/2020.06.18.148072
Vila-Vidal, M., Capouskova, K., Atasoy, S.
, Kringelbach, M. L. & Deco, G. (2020).
Uncovering the spatiotemporal scales of common neuro-mental constructs: Comment on “Is temporo-spatial dynamics the ‘common currency’ of brain and mind? In Quest of ‘Spatiotemporal Neuroscience’ ” by Georg Northoff et al. Physics of Life Reviews,
33, 64-66.
https://doi.org/10.1016/j.plrev.2019.10.004