Kringelbach, M. L., Cruzat, J.
, Cabral, J., Knudsen, G. M., Carhart-Harris, R., Whybrow, P. C., Logothetis, N. K. & Deco, G. (2020).
Dynamic coupling of whole-brain neuronal and neurotransmitter systems.
Proceedings of the National Academy of Sciences of the United States of America,
117(17), 9566-9576.
https://doi.org/10.1073/pnas.1921475117
Niranjan, D., Toiviainen, P.
, Brattico, E. & Alluri, V. (2019).
Dynamic Functional Connectivity in the Musical Brain. In P. Liang, V. Goel & C. Shan (Eds.),
Brain Informatics : 12th International Conference, BI 2019 Haikou, China, December 13–15, 2019 Proceedings (pp. 82-91). Springer. Lecture Notes in Computer Science Vol. 11976 LNAI
https://doi.org/10.1007/978-3-030-37078-7_9
Parsons, C. E., Young, K. S.
, Petersen, M. V., Jegindoe Elmholdt, E-M.
, Vuust, P., Stein, A.
& Kringelbach, M. L. (2017).
Duration of motherhood has incremental effects on mothers' neural processing of infant vocal cues: a neuroimaging study of women.
Scientific Reports,
7(1), [1727].
https://doi.org/10.1038/s41598-017-01776-3
Costa, M.
, Bonetti, L., VIgnali, V., Bichicchi, A., Lantieri, C. & Simone, A. (2019).
Driver's visual attention to different categories of roadside advertising signs.
Applied Ergonomics,
78, 127-136.
https://doi.org/10.1016/j.apergo.2019.03.001
Starcke, K., von Georgi, R.
, Tiihonen, T. M., Laczika, K. F. & Reuter, C. (2019).
Don't drink and chill: Effects of alcohol on subjective and physiological reactions during music listening and their relationships with personality and listening habits.
International Journal of Psychophysiology,
142, 25-32.
https://doi.org/10.1016/j.ijpsycho.2019.06.001
Daffertshofer, A., Ton, R.
, Kringelbach, M. L., Woolrich, M. & Deco, G. (2018).
Distinct criticality of phase and amplitude dynamics in the resting brain.
NeuroImage,
180, 442-447.
https://doi.org/10.1016/j.neuroimage.2018.03.002
Bruzzone, S. E. P., Lumaca, M., Brattico, E., Vuust, P., Kringelbach, M. L. & Bonetti, L. (2022).
Dissociated brain functional connectivity of fast versus slow frequencies underlying individual differences in fluid intelligence: a DTI and MEG study.
Scientific Reports,
12(1), [4746].
https://doi.org/10.1038/s41598-022-08521-5
Jakubowski, K., Finkel, S.
, Stewart, L. & Müllensiefen, D. (2017).
Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery.
Psychology of Aesthetics, Creativity, and the Arts,
11(2), 122-135.
https://doi.org/10.1037/aca0000090
Fernandes, H. M., Cabral, J., van Hartevelt, T. J., Lord, L. D.
, Gleesborg, C., Møller, A., Deco, G., Whybrow, P. C., Petrovic, P., James, A. C.
& Kringelbach, M. L. (2019).
Disrupted brain structural connectivity in Pediatric Bipolar Disorder with psychosis.
Scientific Reports,
9(1), [13638].
https://doi.org/10.1038/s41598-019-50093-4
Stevner, A. B. A., Vidaurre, D., Cabral, J., Rapuano, K., Nielsen, S. F. V., Tagliazucchi, E., Laufs, H.
, Vuust, P., Deco, G., Woolrich, M. W., Van Someren, E.
& Kringelbach, M. L. (2019).
Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep.
Nature Communications,
10(1), [1035].
https://doi.org/10.1038/s41467-019-08934-3
Tsatsishvili, V., Cong, F., Puoliväli, T., Alluri, V., Toiviainen, P., Nandi, A. K.
, Brattico, E. & Ristaniemi, T. (2013).
Dimension reduction for individual ICA to decompose FMRI during real-world experiences: Principal component analysis vs. canonical correlation analysis. In
ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 137-142)
Sipola, T., Cong, F., Ristaniemi, T., Alluri, V., Toiviainen, P.
, Brattico, E. & Nandi, A. K. (2013).
Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis.
IEEE International Workshop on Machine Learning for Signal Processing.
https://doi.org/10.1109/MLSP.2013.6661923
Moorthigari, V., Carlson, E., Toiviainen, P.
, Brattico, E. & Alluri, V. (2020).
Differential Effects of Trait Empathy on Functional Network Centrality. In M. Mahmud, S. Vassanelli, M. S. Kaiser & N. Zhong (Eds.),
Brain informatics (pp. 107-117). Springer. Lecture Notes in Computer Science Vol. 12241
https://doi.org/10.1007/978-3-030-59277-6_10
Garrido, L., Eisner, F., McGettigan, C.
, Stewart, L., Sauter, D., Hanley, J. R., Schweinberger, S. R., Warren, J. D. & Duchaine, B. (2009).
Developmental phonagnosia: a selective deficit of vocal identity recognition.
Neuropsychologia,
47(1), 123-31.
https://doi.org/10.1016/j.neuropsychologia.2008.08.003
Chen, J. L., Kumar, S., Williamson, V. J.
, Scholz, J., Griffiths, T. D.
& Stewart, L. (2015).
Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm.
Frontiers in Psychology,
6, 9.
https://doi.org/10.3389/fpsyg.2015.00009
Quiroga Martinez, D. R., Hansen, N. C., Højlund, A., Pearce, M., Brattico, E. & Vuust, P. (2020).
Decomposing neural responses to melodic surprise in musicians and non-musicians: evidence for a hierarchy of predictions in the auditory system.
NeuroImage,
215, [116816].
https://doi.org/10.1016/j.neuroimage.2020.116816
Rué-Queralt, J.
, Stevner, A., Tagliazucchi, E., Laufs, H.
, Kringelbach, M. L., Deco, G.
& Atasoy, S. (2021).
Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep.
Communications Biology,
4(1), [854].
https://doi.org/10.1038/s42003-021-02369-7
Perl, Y. S., Pallavicini, C., Ipiña, I. P.
, Kringelbach, M., Deco, G., Laufs, H. & Tagliazucchi, E. (2020).
Data augmentation based on dynamical systems for the classification of brain states.
Chaos, Solitons and Fractals,
139, [110069].
https://doi.org/10.1016/j.chaos.2020.110069
Ahrends, C., Stevner, A., Pervaiz, U.
, Kringelbach, M. L., Vuust, P., Woolrich, M. W.
& Vidaurre, D. (2022).
Data and model considerations for estimating time-varying functional connectivity in fMRI.
NeuroImage,
252, [119026].
https://doi.org/10.1016/j.neuroimage.2022.119026
Niklassen, A. S., Ovesen, T., Fernandes, H. & Fjaeldstad, A. (2019).
Danish Validation of Sniffin’ Sticks Olfactory Test for Threshold, Discrimination, and Identification. Poster session presented at Dansk Selskab for Oto-rhino-laryngologi, Hoved-Halskirurgi: DSOHH årsmøde, Nyborg, Denmark.
Overath, T., Kumar, S.
, Stewart, L., von Kriegstein, K., Cusack, R., Rees, A. & Griffiths, T. D. (2010).
Cortical mechanisms for the segregation and representation of acoustic textures.
The Journal of neuroscience : the official journal of the Society for Neuroscience,
30(6), 2070-6.
https://doi.org/10.1523/JNEUROSCI.5378-09.2010
Tiihonen, M.
, Brattico, E., Maksimainen, J., Wikgren, J. & Saarikallio, S. (2017).
Constituents of music and visual-art related pleasure - A critical integrative literature review.
Frontiers in Psychology,
8(JUL), [1218].
https://doi.org/10.3389/fpsyg.2017.01218
Atasoy, S., Roseman, L., Kaelen, M.
, Kringelbach, M. L., Deco, G. & Carhart-Harris, R. L. (2017).
Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.
Scientific Reports,
7(1), [17661].
https://doi.org/10.1038/s41598-017-17546-0
Alluri, V., Toiviainen, P., Burunat, I.
, Kliuchko, M., Vuust, P. & Brattico, E. (2017).
Connectivity patterns during music listening: Evidence for action-based processing in musicians.
Human Brain Mapping,
38(6), 2955.
https://doi.org/10.1002/hbm.23565
Vuust, P., Liikala, L.
, Näätänen, R., Brattico, P.
& Brattico, E. (2016).
Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm.
Clinical Neurophysiology,
4(127), 2065-2077.
https://doi.org/10.1016/j.clinph.2015.11.009
Haumann, N. T., Parkkonen, L.
, Kliuchko, M., Vuust, P. & Brattico, E. (2016).
Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study.
Computational Intelligence and Neuroscience,
2016, 1-10.
https://doi.org/10.1155/2016/7489108