Parsons, C., Stark, E. A., Young, K. S., Stein, A.
& Kringelbach, M. L. (2013).
Understanding the human parental brain. A critical role of the orbitofrontal cortex.
Social Neuroscience,
8(6), 525-43.
https://doi.org/10.1080/17470919.2013.842610
Escrichs, A., Perl, Y. S., Uribe, C., Camara, E., Türker, B., Pyatigorskaya, N., López-González, A., Pallavicini, C., Panda, R., Annen, J., Gosseries, O., Laureys, S., Naccache, L., Sitt, J. D., Laufs, H., Tagliazucchi, E.
, Kringelbach, M. L. & Deco, G. (2022).
Unifying turbulent dynamics framework distinguishes different brain states.
Communications Biology,
5(1), [638].
https://doi.org/10.1038/s42003-022-03576-6
Kaasgaard, M., Rasmussen, D. B., Hjerrild Andreasson, K., Hilberg, O., Løkke, A.
, Vuust, P. & Bodtger, U. (2022).
Use of Singing for Lung Health as an alternative training modality within pulmonary rehabilitation for COPD: a randomised controlled trial.
The European Respiratory Journal,
59(5), [2101142].
https://doi.org/10.1183/13993003.01142-2021
Fjaeldstad, A. W., Stiller-Stut, F.
, Gleesborg, C., Kringelbach, M. L., Hummel, T.
& Fernandes, H. M. (2021).
Validation of Olfactory Network Based on Brain Structural Connectivity and Its Association With Olfactory Test Scores.
Frontiers in Systems Neuroscience,
15, [638053].
https://doi.org/10.3389/fnsys.2021.638053
Fink, L. K., Warrenburg, L. A., Howlin, C., Randall, W. M.
, Hansen, N. C. & Wald-Fuhrmann, M. (2021).
Viral tunes: changes in musical behaviours and interest in coronamusic predict socio-emotional coping during COVID-19 lockdown.
Humanities and social sciences communications,
8, [180].
https://doi.org/10.1057/s41599-021-00858-y
Møller, C., Højlund, A., Bærentsen, K. B., Hansen, N. C., Skewes, J. C. & Vuust, P. (2018).
Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.
Attention, Perception & Psychophysics,
80(4), 999-1010.
https://doi.org/10.3758/s13414-017-1481-8
De Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-Garcia, A., Salazar-Casals, A.
& Ravignani, A. (2022).
Vocal tract allometry in a mammalian vocal learner.
Journal of Experimental Biology,
225(8), [jeb243766].
https://doi.org/10.1242/jeb.243766
Kleber, B., Veit, R., Moll, C. V., Gaser, C., Birbaumer, N. & Lotze, M. (2016).
Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.
NeuroImage,
133, 477-83.
https://doi.org/10.1016/j.neuroimage.2016.03.045
Lumaca, M., Haumann, N. T., Brattico, E., Grube, M. & Vuust, P. (2019).
Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity.
European Journal of Neuroscience,
49(12), 1597-1609.
https://doi.org/10.1111/ejn.14329
Soler-Toscano, F., Galadí, J. A., Escrichs, A., Perl, Y. S., López-González, A., Sitt, J. D., Annen, J., Gosseries, O., Thibaut, A., Panda, R., Esteban, F. J., Laureys, S.
, Kringelbach, M. L., Langa, J. A. & Deco, G. (2022).
What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics.
PLOS Computational Biology,
18(9), [e1010412].
https://doi.org/10.1371/journal.pcbi.1010412
Deco, G., Cruzat, J.
, Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N. K.
& Kringelbach, M. L. (2018).
Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD.
Current Biology,
28(19), 3065-+.
https://doi.org/10.1016/j.cub.2018.07.083
Bonetti, L., Carlomagno, F., Kliuchko, M., Gold, B. P., Palva, S.
, Trusbak Haumann, N., Tervaniemi, M., Huotilainen, M.
, Vuust, P. & Brattico, E. (2022).
Whole-brain computation of cognitive versus acoustic errors in music: A mismatch negativity study.
Neuroimage: Reports,
2(4), [100145].
https://doi.org/10.1016/j.ynirp.2022.100145
Uribe, C., Escrichs, A., de Filippi, E., Sanz-Perl, Y., Junque, C., Gomez-Gil, E.
, Kringelbach, M. L., Guillamon, A. & Deco, G. (2022).
Whole-brain dynamics differentiate among cisgender and transgender individuals.
Human Brain Mapping,
43(13), 4103-4115.
https://doi.org/10.1002/hbm.25905
Klarlund, M., Brattico, E., Pearce, M., Wu, Y.
, Vuust, P., Overgaard, M. & Du, Y. (2023).
Worlds apart? Testing the cultural distance hypothesis in music perception of Chinese and Western listeners.
Cognition,
235, [105405].
https://doi.org/10.1016/j.cognition.2023.105405
Stewart, L., Overath, T., Warren, J. D., Foxton, J. M. & Griffiths, T. D. (2008).
fMRI evidence for a cortical hierarchy of pitch pattern processing.
PLOS ONE,
3(1), e1470.
https://doi.org/10.1371/journal.pone.0001470
Sabharwal, S. R., Varlet, M., Breaden, M., Volpe, G., Camurri, A.
& Keller, P. E. (2022).
huSync - A model and system for the measure of synchronization in small groups: A case study on musical joint action.
IEEE Access,
10, 92357-92372.
https://doi.org/10.1109/ACCESS.2022.3202959
Peng-Li, D., Alves da Mota, P., Costa Correa, C. M., Chan, R. C. K.
, Byrne, D. V. & Wang, Q. J. (2022).
“Sound” Decisions: The Combined Role of Ambient Noise and Cognitive Regulation on the Neurophysiology of Food Cravings.
Frontiers in Neuroscience,
16, [827021].
https://doi.org/10.3389/fnins.2022.827021
Mohseni, H. R.
, Kringelbach, M. L., Smith, P. P., Green, A. L.
, Parsons, C. E., Young, K. S., Brittain, J-S., Hyam, J. A., Schweder, P. M., Stein, J. F. & Aziz, T. Z. (2010).
Application of a Null-Beamformer to Source Localisation in MEG Data of Deep Brain Stimulation.
IEEE Engineering in Medicine and Biology Society Conference Proceedings, 4120-4123.
Kübler, Nijboer, Mellinger, Matuz
, Kleber, B., Eitel-Braitsch, Sellers, Vaughan, Wolpaw & Birbaumer (2005).
Brain-computer interfaces - Communication with the P300.
Psychophysiology,
19, 128-128.
Sipola, T., Cong, F., Ristaniemi, T., Alluri, V., Toiviainen, P.
, Brattico, E. & Nandi, A. K. (2013).
Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis.
IEEE International Workshop on Machine Learning for Signal Processing.
https://doi.org/10.1109/MLSP.2013.6661923
Liu, C., Fa, R., Abu-Jamous, B.
, Brattico, E. & Nandi, A. (2015).
Scalable clustering based on enhanced-smart for large-scale fMRI datasets.
I E E E International Conference on Acoustics, Speech and Signal Processing. Proceedings, 962-966.
Puolivali, T., Cong, F., Alluri, V., Lin, Q-H., Toiviainen, P., Nandi, A. K.
, Brattico, E. & Ristaniemi, T. (2013).
Semi-blind Independent Component Analysis of functional MRI elicited by continuous listening to music.
International Conference on Acoustics Speech and Signal Processing ICASSP, 1310-1314.
Stark, E., Stacey, J., Mandy, W.
, Kringelbach, M. L. & Happé, F. (2021).
'Uncertainty attunement' has explanatory value in understanding autistic anxiety.
Trends in Cognitive Sciences,
25(12), 1011-1012.
https://doi.org/10.1016/j.tics.2021.09.006
Luppi, A. I.
, Cabral, J., Cofre, R., Destexhe, A., Deco, G.
& Kringelbach, M. L. (2022).
Dynamical models to evaluate structure–function relationships in network neuroscience.
Nature Reviews Neuroscience,
23(12), 767-768.
https://doi.org/10.1038/s41583-022-00646-w
Oswald, J. N., Van Cise, A. M., Dassow, A., Elliott, T., Johnson, M. T.
, Ravignani, A. & Podos, J. (2022).
A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data.
Applied Sciences (Switzerland),
12(23), [12046].
https://doi.org/10.3390/app122312046