Deco, G., Perl, Y. S., Jerotic, K., Escrichs, A.
& Kringelbach, M. L. (2025).
Turbulence as a framework for brain dynamics in health and disease.
Neuroscience and Biobehavioral Reviews,
169, Article 105988.
https://doi.org/10.1016/j.neubiorev.2024.105988
Vohryzek, J.
, Cabral, J., Vuust, P., Deco, G.
& Kringelbach, M. L. (2022).
Understanding brain states across spacetime informed by whole-brain modelling.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
380(2227), Article 20210247.
https://doi.org/10.1098/rsta.2021.0247
Heng, J. G., Zhang, J.
, Bonetti, L., Lim, W. P. H.
, Vuust, P., Agres, K. & Chen, S. H. A. (2024).
Understanding music and aging through the lens of Bayesian inference.
Neuroscience and Biobehavioral Reviews,
163, Article 105768.
https://doi.org/10.1016/j.neubiorev.2024.105768
Luppi, A. I.
, Cabral, J., Cofre, R., Destexhe, A., Deco, G.
& Kringelbach, M. L. (2022).
Dynamical models to evaluate structure–function relationships in network neuroscience.
Nature Reviews Neuroscience,
23(12), 767-768.
https://doi.org/10.1038/s41583-022-00646-w
Stark, E., Stacey, J., Mandy, W.
, Kringelbach, M. L. & Happé, F. (2021).
'Uncertainty attunement' has explanatory value in understanding autistic anxiety.
Trends in Cognitive Sciences,
25(12), 1011-1012.
https://doi.org/10.1016/j.tics.2021.09.006
Mohseni, H. R.
, Kringelbach, M. L., Smith, P. P., Green, A. L.
, Parsons, C. E., Young, K. S., Brittain, J.-S., Hyam, J. A., Schweder, P. M., Stein, J. F. & Aziz, T. Z. (2010).
Application of a Null-Beamformer to Source Localisation in MEG Data of Deep Brain Stimulation.
IEEE Engineering in Medicine and Biology Society Conference Proceedings, 4120-4123.
Kübler, Nijboer, Mellinger, Matuz
, Kleber, B., Eitel-Braitsch, Sellers, Vaughan, Wolpaw & Birbaumer (2005).
Brain-computer interfaces - Communication with the P300.
Psychophysiology,
19, 128-128.
Sipola, T., Cong, F., Ristaniemi, T., Alluri, V., Toiviainen, P.
, Brattico, E. & Nandi, A. K. (2013).
Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis.
IEEE International Workshop on Machine Learning for Signal Processing.
https://doi.org/10.1109/MLSP.2013.6661923
Liu, C., Fa, R., Abu-Jamous, B.
, Brattico, E. & Nandi, A. (2015).
Scalable clustering based on enhanced-smart for large-scale fMRI datasets.
I E E E International Conference on Acoustics, Speech and Signal Processing. Proceedings, 962-966.
Puolivali, T., Cong, F., Alluri, V., Lin, Q.-H., Toiviainen, P., Nandi, A. K.
, Brattico, E. & Ristaniemi, T. (2013).
Semi-blind Independent Component Analysis of functional MRI elicited by continuous listening to music.
International Conference on Acoustics Speech and Signal Processing ICASSP, 1310-1314.
James, A., Joyce, E., Lunn, D., Kenny, L., Hough, M., Ghataorhe, P.
, Fernandes, H., Mathews, P. & Zarei, M. (2016).
Abnormal frontostriatal connectivity in adolescent-onset schizophrenia and its relationship to cognitive functioning.
European Psychiatry,
35, 32-38.
Shestakova, A.
, Brattico, E., Huotilainen, M., Galunov, U., Soloviev, A., Sams, M., Ilmoniemi, RJ. & Naatanen, R. (2002).
Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study.
NeuroReport,
13(14), 1813-1816.
Witek, M. A. G., Liu, J., Kuubertzie, J., Yankyera, A. P., Adzei, S.
& Vuust, P. (2020).
A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff.
Music Perception,
37(4), 278-297.
https://doi.org/10.1525/MP.2020.37.4.278
Hansen, N. C., Treider, J. M. G., Swarbrick, D., Bamford, J. S., Wilson, J. & Vuoskoski, J. K. (2021).
A Crowd-Sourced Database of Coronamusic: Documenting Online Making and Sharing of Music During the COVID-19 Pandemic.
Frontiers in Psychology,
12, Article 684083.
https://doi.org/10.3389/fpsyg.2021.684083
Burunat, I.
, Brattico, E., Puoliväli, T., Ristaniemi, T., Sams, M. & Toiviainen, P. (2015).
Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening.
PLOS ONE,
10(9), e0138238.
https://doi.org/10.1371/journal.pone.0138238
Seeberg, A. B., Trusbak Haumann, N., Højlund, A., Andersen, A. S., F. Faulkner, K.
, Brattico, E., Vuust, P. & Petersen, B. (2023).
Adapting to the Sound of Music - Development of Music Discrimination Skills in Recently Implanted CI Users.
Trends in Hearing,
27.
https://doi.org/10.1177/23312165221148035
Istok, E.
, Brattico, E., Jacobsen, T., Krohn, K., Mueller, M. & Tervaniemi, M. (2009).
Aesthetic responses to music: A questionnaire study.
Musicae Scientiae,
13(2), 183-206.
Brattico, E., Alluri, V., Bogert, B.
, Jacobsen, T., Vartiainen, N., Nieminen, S. & Tervaniemi, M. (2011).
A functional MRI study of happy and sad emotions in music with and without lyrics.
Frontiers in Psychology,
2, Article 308.
https://doi.org/10.3389/fpsyg.2011.00308
Bonetti, L., Fernández-Rubio, G., Lumaca, M., Carlomagno, F.
, Risgaard Olsen, E., Criscuolo, A., Kotz, S. A.
, Vuust, P., Brattico, E. & Kringelbach, M. L. (2024).
Age-related neural changes underlying long-term recognition of musical sequences.
Communications Biology,
7(1), Article 1036.
https://doi.org/10.1038/s42003-024-06587-7
Heggli, O. A., Cabral, J., Konvalinka, I., Vuust, P. & Kringelbach, M. L. (2019).
A Kuramoto model of self-other integration across interpersonal synchronization strategies.
PLOS Computational Biology,
15(10), Article e1007422.
https://doi.org/10.1371/journal.pcbi.1007422